On two-dimensional directed percolation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 213815
(http://iopscience.iop.org/0305-4470/21/19/018)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 16:42

Please note that terms and conditions apply.

On two-dimensional directed percolation

J W Essam \dagger, A J Guttmann \ddagger and K De’Bell§
† Department of Mathematics, Royal Holloway and Bedford New College, University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
\ddagger Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia
§ Department of Physics, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada

Received 18 March 1988

Abstract

Extended series expansions for the mean size and the first and second moments of the pair connectedness for both bond and site percolation on the directed square and triangular lattices have been obtained. Analysis based on differential approximants allows the critical percolation probabilities and exponents to be estimated, and as a result the critical exponents are conjectured to be $\gamma=41 / 18, \nu_{\perp}=79 / 72$ and $\nu_{\|}=26 / 15$. Scaling then gives $\beta=199 / 720, \alpha=-299 / 360$ and $\delta=1839 / 199$.

1. Introduction

In an earlier paper (Essam et al 1986, hereafter referred to as I), we reported on an analysis of the first 35 terms of the moments of the pair connectedness $C_{i}(p)$ for bond percolation on the directed square lattice. The moments studied are defined as follows:
$S=\mu_{0}=\sum C_{i}(p) \quad \mu_{2 x}=\left\langle x^{2}\right\rangle=\sum x_{i}^{2} C_{i}(p) \quad \mu_{2 t}=\left\langle t^{2}\right\rangle=\sum t_{i}^{2} C_{i}(p)$
where x_{i} and t_{i} are the coordinates of the i th lattice site perpendicular and parallel to the preferred (1,1) direction. The zeroth moment is the mean-size series, and its critical exponent is usually denoted γ. The two second-moment series have exponents $\gamma+2 \nu_{\perp}$ and $\gamma+2 \nu_{\|}$respectively.

These series were generated and extended by supplementing the transfer-matrix method of Blease (1977) with a weak subgraph expansion (De'Bell and Essam 1983) and extended using a Dyson equation. Further details are provided in § 2.

In I, the series for the square lattice bond percolation problem were investigated using standard Padé methods and the method of Adler et al (1981) which is designed to reveal and identify confluent exponents. While these methods, combined with the longer series, gave considerably improved exponent and percolation probability estimates, the claimed errors were perhaps optimistic, as the methods of analysis could not cope with certain functional features believed to be present in the moment series, such as an additive analytic background term. To illustrate this point, if one takes a series, and performs a Dlog Padé analysis on the series, certain exponent and critical point estimates will emerge. If one then changes the first term in the series by one, say, repetition of the analysis gives rise to a slightly different set of estimates. Such a change simulates a background term. The method of differential approximants (Guttmann and Joyce 1972, Joyce and Guttmann 1973, Rehr et al 1980) can accommodate such changes, as well as confluent singularities, logarithmic divergences and most of the functional features expected in non-pathological models of statistical mechanical
systems. In § 3, we analyse the new series, which have been substantially extended. We also analyse the new first-moment series, $\mu_{1 t}=\langle t\rangle=\Sigma t_{i} C_{i}(p)$.

Recent understanding of two-dimensional lattice models has led to the belief that critical exponents for such systems should be simple rational fractions. Such a conclusion follows from conformal invariance theory (Cardy 1987) in which case the various operators are quantised, giving rise to rational exponents.

Conformal invariance theory requires that the correlation functions be invariant under translation. In the problem of directed percolation all correlation functions are defined relative to a particular source and (once the source has been chosen) translational invariance is completely destroyed. However, there is still rotational invariance about the axis through the source parallel to the special direction.

Nevertheless, we examine the possibility that rational exponents will be found even in this case. Indeed, if we look at the exponent estimates in I, which were $\gamma=$ $2.27721 \pm 0.0003, \nu_{\perp}=1.0972 \pm 0.0006$ and $\nu_{\|}=1.7334 \pm 0.001$ (with additional uncertainties proportional to the error in p_{c}) and seek the most 'obvious' exact fractions, then $\gamma=41 / 18=2.277777 \ldots, \nu_{\perp}=79 / 72=1.0972222 \ldots$ and $\nu_{\|}=26 / 15=1.733333$ suggest themselves. The value for γ is particularly appealing as the value of the corresponding exponent for ordinary percolation is $\gamma=43 / 18=2.38888 \ldots$, while the correlation function exponent ν_{\perp} is less convincing, with its large denominator. It must be remembered that it is the directed nature of this problem that gives rise to two distinct correlation exponents, and so any non-simple aspect of the problem might be expected to manifest itself in the value of the correlation function exponents. The scaling law $\beta=\left(\nu_{\|}+\nu_{\perp}-\gamma\right) / 2$ then gives $\beta=199 / 720$, while the scaling law $\alpha+2 \beta+$ $\gamma=2$ gives $\alpha=-299 / 360$. Both these values have unusually large denominators, while increasing the numerators just by 1 yields the far simpler and certainly more appealing fractions $\beta=5 / 18$ and $\alpha=-5 / 6$. These would imply that $\nu_{\|}+\nu_{\perp}=17 / 6$. In § 3 we argue that the numerical evidence favours the former exponent set. In $\S 4$ we return to the question of conformal invariance and point out that our conjectured exponent values do not correspond to any single family of exponents, as characterised by a particular central change.

2. Derivation of series expansions

Low-density series expansions for the mean cluster size and spatial moments of directed lattice percolation models have previously been obtained using a transfer-matrix method for the pair connectedness (Blease 1977, De'Bell and Essam 1983). Here we show that the same transfer-matrix method used in conjunction with non-nodal graph expansions allows the length of the series obtained by the basic transfer-matrix method to be doubled.

2.1. Non-nodal graph expansions

Let $S(t)$ be the expected number of sites which are connected to the origin and whose distance from the origin measured parallel to the preferred direction is t. In terms of $S(t)$ the mean cluster size and first two parallel moments of the cluster mass distribution are given, respectively, by

$$
\begin{equation*}
S=\sum_{t=0}^{\infty} S(t) \quad \mu_{1 t}=\sum_{t=1}^{\infty} t S(t) \quad \mu_{2 t}=\sum_{t=1}^{\infty} t^{2} S(t) \tag{2.1}
\end{equation*}
$$

where the dependence on p has been suppressed and $S(0)=1$. The function $S(t)$ is related to the pair connectedness $C(x, t)$ by

$$
\begin{equation*}
S(t)=\sum_{x} C(x, t) \tag{2.2}
\end{equation*}
$$

where the sum is over all lattice sites whose parallel distance from the origin is t and the vector \boldsymbol{x} is the component of the position vector of a given such site perpendicular to the preferred direction. The function

$$
\begin{equation*}
X(t)=\sum_{x} x^{2} C(x, t) \tag{2.3}
\end{equation*}
$$

will also be considered and serves to determine the second perpendicular moment of the cluster mass distribution

$$
\begin{equation*}
\mu_{2 x}=\sum_{t=0}^{\infty} X(t) \tag{2.4}
\end{equation*}
$$

The pair connectedness $C(x, t)$ may be expressed (Essam 1972) as a sum over all subgraphs of the lattice graph which may be formed by taking unions of possible directed paths connecting the origin to the site (x, t):

$$
\begin{equation*}
C(x, t)=\sum_{g} d(g) p^{e} \tag{2.5}
\end{equation*}
$$

where e is the number of random elements (sites or bonds) in g and in the case of site percolation the site at the origin, which is the source, is not counted as a random element. A graph g is nodal if there is an intermediate vertex through which all the above-mentioned paths must pass. This vertex is called a nodal point. The non-nodal contribution $S^{\mathrm{N}}(t)$ to $S(t)$ is defined by the above sum over graphs (2.5) restricted to non-nodal graphs. By convention $S^{N}(0)=0$. If g is the series combination of graphs g_{1} and g_{2}, so that their common vertex is a nodal point, then the d weight $d(g)$ factorises as the product of the d weights for the two separate graphs. This was used by Bhatti and Essam (1984) to show that S satisfies a 'Dyson equation':

$$
\begin{equation*}
S=1+S^{N} S \tag{2.6}
\end{equation*}
$$

where, here and below, the superscript N denotes that $S(t)$ has been replaced by $S^{\mathrm{N}}(t)$ in this case in the definition (2.1) of S, and following the derivation of Bhatti and Essam we obtain, for $t \geqslant 1$:

$$
\begin{equation*}
S(t)=\sum_{t^{\prime}=1}^{t} S^{\mathrm{N}}\left(t^{\prime}\right) S\left(t-t^{\prime}\right) \tag{2.7}
\end{equation*}
$$

from which (2.6) follows by summation over t.
Using the definition of $\mu_{1 t}$ (2.1) together with (2.7)

$$
\begin{align*}
\mu_{1 t} & =\sum_{t=1}^{\infty} t \sum_{t^{\prime}=1}^{t} S^{\mathrm{N}}\left(t^{\prime}\right) S\left(t-t^{\prime}\right) \\
& =\sum_{t^{\prime}=1}^{\infty} \sum_{t^{\prime}=0}^{\infty}\left(t^{\prime}+t^{\prime \prime}\right) S^{\mathrm{N}}\left(t^{\prime}\right) S\left(t^{\prime \prime}\right) \tag{2.8}\\
& =\mu_{1 t}^{\mathrm{N}} S+S^{\mathrm{N}} \mu_{1 t} . \tag{2.9}
\end{align*}
$$

Combining (2.9) and (2.6)

$$
\begin{equation*}
\mu_{1 t}=\mu_{1 t}^{N} S^{2} . \tag{2.10}
\end{equation*}
$$

Similarly, replacing $\left(t^{\prime}+t^{\prime \prime}\right)$ by $\left(t^{\prime}+t^{\prime \prime}\right)^{2}$ in (2.8)

$$
\begin{equation*}
\mu_{2 t}=\mu_{2 t}^{N} S+2 \mu_{1 t}^{N} \mu_{1 t}+S^{N} \mu_{2 t}=\left[\mu_{2 t}^{N}+2\left(\mu_{1 t}^{N}\right)^{2} S\right] S^{2} . \tag{2.11}
\end{equation*}
$$

The corresponding relation for $\mu_{2 x}$ may be obtained by substituting (2.5) into (2.3) and then following Bhatti and Essam's derivation of (2.6) with the result, for $t \geqslant 1$:

$$
\begin{equation*}
X(t)=\sum_{t^{\prime}=1}^{t}\left[S^{\mathrm{N}}\left(t^{\prime}\right) X\left(t-t^{\prime}\right)+X^{\mathrm{N}}\left(t^{\prime}\right) S\left(t-t^{\prime}\right)\right] \tag{2.12}
\end{equation*}
$$

where we have assumed that the symmetry of the lattice is such that the first perpendicular moment of the cluster mass distribution, restricted to atoms with coordinate t, is zero. Notice that $X(0)=0$ and by convention $X^{N}(0)=0$. Summing over t and using (2.4) and (2.6), we obtain

$$
\begin{equation*}
\mu_{2 x}=\mu_{2 x}^{N} S^{2} . \tag{2.13}
\end{equation*}
$$

2.2. Series expansion algorithm

In a previous paper it was shown how $S(t)$ and $X(t)$ could be obtained by t iterations of a transfer matrix. These functions are polynomials in p and from (2.5) it follows that the powers of p less than $m(t)$ are zero, where $m(t)$ is the length of the shortest walk required to reach a site whose parallel distance from the origin is t. For the square lattice $m(t)=t$ but for the triangular lattice $m(t)=[(t+1) / 2]$, where [] denotes integer below. Therefore if $S\left(t^{\prime}\right)$ and $X\left(t^{\prime}\right)$ are determined for $t \leqslant t$ to order $m(t+1)-1$ then the mean size and moments will be determined to order $m(t+1)-1$. For $t \geqslant 2$ the functions $S^{\mathrm{N}}(t)$ and $X^{\mathrm{N}}(t)$ are polynomials, the leading power of p of which is determined by the smallest number of random elements $n(t)$ which are needed to provide two parallel paths, the intermediate vertices of which are disjoint. For bond percolation on the square lattice $n(t)=2 t$ and for the triangular lattice $n(t)=t+1$. In the case of site percolation $n(t)$ is one less than for bond percolation since both paths have the same terminal vertex (the initial vertex is considered to be non-random). In any case $n(t)$ is approximately $2 m(t)$ which is the key to the following improved algorithm. The steps are as follows.
(i) Use the transfer-matrix method to obtain the polynomials $S\left(t^{\prime}\right)$ and $X\left(t^{\prime}\right)$ for $t^{\prime} \leqslant t$ to order $n(t+1)-1$ (rather than $m(t+1)-1$ as in the standard method).
(ii) Set $S^{\mathrm{N}}(1)=S(1)$ and $X^{\mathrm{N}}(1)=X(1)$.
(iii) For $2 \leqslant t^{\prime} \leqslant t$ use the recurrence formulae

$$
\begin{equation*}
S^{N}\left(t^{\prime}\right)=S\left(t^{\prime}\right)-\sum_{t^{\prime \prime}=1}^{t^{\prime}-1} S^{N}\left(t^{\prime \prime}\right) S\left(t^{\prime}-t^{\prime \prime}\right) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
X^{N}\left(t^{\prime}\right)=X\left(t^{\prime}\right)-\sum_{t^{\prime \prime}=1}^{t^{\prime}-1}\left[S^{N}\left(t^{\prime \prime}\right) X\left(t^{\prime}-t^{\prime \prime}\right)+X^{N}\left(t^{\prime \prime}\right) S\left(t^{\prime}-t^{\prime \prime}\right)\right] \tag{2.15}
\end{equation*}
$$

to determine $S^{\mathrm{N}}\left(t^{\prime}\right)$ and $X^{\mathrm{N}}\left(t^{\prime}\right)$ correct to order $n(t+1)-1$. These formulae follow by rearrangement of equations (2.7) and (2.12).
(iv) Form the sums (2.1) and (2.4) as far as t, with S and X replaced by S^{N} and X^{N}, using the truncated polynomials $S^{N}\left(t^{\prime}\right)$ and $X^{N}\left(t^{\prime}\right)$ of (iii) to obtain $S^{N}, \mu_{1 t}^{N}, \mu_{2 t}^{N}$ and $\mu_{2 x}^{N}$ correct to order $p^{n(t+1)-1}$ (notice that the corresponding sums using $S(t)$ and $X(t)$ would only be correct to $\left.p^{m(t+1)-1)}\right)$.
(v) Use formulae (2.6), (2.10), (2.11) and (2.13) to obtain $S, \mu_{11}, \mu_{2 t}$ and $\mu_{2 x}$ correct to order $p^{n(t+1)-1}$.

We illustrate the algorithm by the following example and our results obtained by programming the algorithm are listed in table 1.

For the square lattice bond problem with $t=3, n(t+1)-1=7$, the transfer-matrix method could be used to obtain the following S and X polynomials:

$$
\begin{array}{llr}
S(1)=2 p & S(2)=4 p^{2}-p^{4} & S(3)=8 p^{3}-4 p^{5}-2 p^{6}+2 p^{7} \\
X(1)=2 p & X(2)=8 p^{2} & X(3)=24 p^{3}-4 p^{5}-2 p^{6}+2 p^{7}
\end{array}
$$

from which we deduce

$$
\begin{aligned}
& S^{\mathrm{N}}(1)=2 p \quad S^{\mathrm{N}}(2)=S(2)-S^{\mathrm{N}}(1) S(1)=4 p^{2}-p^{4}-(2 p)^{2}=-p^{4} \\
& S^{\mathrm{N}}(3)=S(3)-S^{\mathrm{N}}(1) S(2)-S^{\mathrm{N}}(2) S(1)=-2 p^{6}+2 p^{7} \\
& X^{\mathrm{N}}(1)=2 p \quad X^{\mathrm{N}}(2)=X(2)-S^{\mathrm{N}}(1) X(1)-X^{\mathrm{N}}(1) S(1)=0 \\
& X^{\mathrm{N}}(3)=X(3)-S^{\mathrm{N}}(1) X(2)-S^{\mathrm{N}}(2) X(1)-X^{\mathrm{N}}(1) S(2)-X^{\mathrm{N}}(2) S(1)=-2 p^{6}+2 p^{7} .
\end{aligned}
$$

Notice the cancellation of the lower-order terms on conversion to non-nodal form. Now

$$
\begin{aligned}
& S^{\mathrm{N}}=S^{\mathrm{N}}(1)+S^{\mathrm{N}}(2)+S^{\mathrm{N}}(3)+\mathrm{O}\left(p^{8}\right)=2 p-p^{4}-2 p^{6}+2 p^{7}+\mathrm{O}\left(p^{8}\right) \\
& \mu_{1 t}^{\mathrm{N}}=S^{\mathrm{N}}(1)+2 S^{\mathrm{N}}(2)+3 S^{\mathrm{N}}(3)+\mathrm{O}\left(p^{8}\right)=2 p-2 p^{4}-6 p^{6}+6 p^{7}+\mathrm{O}\left(p^{8}\right) \\
& \mu_{2 t}^{\mathrm{N}}=S^{\mathrm{N}}(1)+4 S^{\mathrm{N}}(2)+9 S^{\mathrm{N}}(3)+\mathrm{O}\left(p^{8}\right)=2 p-4 p^{4}-18 p^{6}+18 p^{7}+\mathrm{O}\left(p^{8}\right) \\
& \mu_{2 x}^{\mathrm{N}}=X^{\mathrm{N}}(1)+X^{\mathrm{N}}(2)+X^{\mathrm{N}}(3)+\mathrm{O}\left(p^{8}\right)=2 p-2 p^{6}+2 p^{7}+\mathrm{O}\left(p^{8}\right)
\end{aligned}
$$

and from (2.6)

$$
\left(1-S^{\mathrm{N}}\right) S=\left(1-2 p+p^{4}+2 p^{6}-2 p^{7}+\mathrm{O}\left(p^{8}\right)\right) S=1
$$

and hence

$$
S=1+2 p+4 p^{2}+8 p^{3}+15 p^{4}+28 p^{5}+50 p^{6}+90 p^{7}+\mathrm{O}\left(p^{8}\right)
$$

and

$$
S^{2}=1+4 p+12 p^{2}+32 p^{3}+78 p^{4}+180 p^{5}+396 p^{6}+\mathrm{O}\left(p^{7}\right)
$$

Substituting the above results in (2.10), (2.11) and (2.13) gives

$$
\begin{aligned}
& \mu_{1 t}=2 p+8 p^{2}+24 p^{3}+62 p^{4}+148 p^{5}+330 p^{6}+710 p^{7}+\mathrm{O}\left(p^{8}\right) \\
& \mu_{2 t}=2 p+16 p^{2}+72 p^{3}+252 p^{4}+764 p^{5}+2094 p^{6}+5362 p^{7}+\mathrm{O}\left(p^{8}\right) \\
& \mu_{2 x}=2 p+8 p^{2}+24 p^{3}+64 p^{4}+156 p^{5}+358 p^{6}+786 p^{7}+\mathrm{O}\left(p^{8}\right) .
\end{aligned}
$$

Table 1. The series expansions for the square lattice bond and site problem and for the triangular lattice bond and site problems.

n	$S(p)$	$\mu_{11}(p)$	$\mu_{2 i}(p)$	$\mu_{2 x}(p)$
Square bond percolation				
0	1	0	0	0
1	2	2	2	2
2	4	8	16	8
3	8	24	72	24
4	15	62	252	64
5	28	148	764	156
6	50	330	2094	358
7	90	710	5362	786
8	156	1464	12968	1664
9	274	2962	30138	3434
10	466	5814	67446	6902
11	804	11288	147048	13656
12	1348	21406	311940	26464
13	2300	40364	649860	50772
14	3804	74570	1325234	95754
15	6450	137602	2668130	179442
16	10547	249088	5278066	331294
17	17784	451868	10346200	609496
18	28826	804766	19977010	1106106
19	48464	1440580	38329556	2004852
20	77689	2529686	72546986	3586874
21	130868	4482584	136785444	6423028
22	207308	7775166	254596418	11351274
23	350014	13664146	473093498	20126538
24	548271	23446020	868060738	35191190
25	931584	40953840	1593517724	61883196
26	1433966	69518842	2887257826	107179834
27	2469368	120978656	5246647808	187216848
28	3725257	203223692	9400175212	321395596
29	6510384	352808860	16935336776	558468104
30	9590838	586473542	30035008322	950702594
31	17192714	1018405966	53731142846	1645491278
32	24357702	1671890010	94373684636	2778049248
33	45428434	2913173846	167898005054	4796424622
34	61388268	4717224772	292175943812	8028750772
35	119938514	8265261498	517568220986	13848760938
36	152169019	13170191912	892446666230	22970545738
37	320596894	23329646078	1576771977102	39658497294
38	366032458	36355510686	2692167518718	65097995126
39	863591282	65539706454	4753002697538	112763087618
40	863729021	99432015478	8030862823894	182857632886
41	2341276788	183391807808	14191946028360	318657133880
42	1916799026	268568296956	23698437327532	509161094708
43	6556348906	513870876498	42048096233634	896268945170
44	3755360368	714234719598	69196800976500	1404966444256
45	18610776960	1440359201368	123705722616080	2511592640496
46	6082131438	1874047502574	200105287694726	3842293796974
47	53874179752	4048390833688	361799444980384	7020605858496
48	1495903344	4791576314698	572522672837924	10398622970264
49	164440159702	11521319804730	1054505095310298	19624561178026

Table 1. (continued)

n	$S(p)$	$\mu_{1!}(p)$	$\mu_{2 \prime}(p)$	$\mu_{2 \times x}(p)$
Square site percolation				
0	1	0	0	0
1	2	2	2	2
2	4	8	16	8
3	7	22	68	24
4	12	52	220	60
5	20	112	608	136
6	33	228	1520	288
7	53	442	3526	582
8	85	832	7756	1132
9	133	1516	16302	2138
10	210	2720	33172	3940
11	322	4754	65378	7114
12	505	8264	126224	12632
13	759	14000	237600	22080
14	1192	23824	441776	38160
15	1748	39318	802820	65056
16	2782	66052	1451932	110172
17	3931	106282	2563356	184032
18	6476	177884	4544304	306968
19	8579	277936	7818078	503650
20	15216	469384	13684784	831408
21	17847	703924	22938278	1340338
22	36761	1225052	39986208	2201840
23	33612	1718226	64996080	3479116
24	93961	3203156	114280984	5733312
25	47282	3974696	177912196	8814468
26	262987	8551248	322438072	14772040
27	-16105	8307370	467942962	21734370
28	827382	23950704	909533348	37997724
29	-571524	13195606	1162410740	51650456
30	2936705	72779892	2614286452	98952836
31	-3661626	-1798 186	2595422914	115227474
32	11507775	246605280	7869393556	266750996
33	-18880652	-165 440790	4348425126	223323542
34	48169220	935635244	25625330524	768153044
35	-90436605	-1166043794	-1 054012626	261658998
36	209765885	3896720688	92617456680	2443777216
37	-421114926	-6470965954	-64842762130	-717803658
38	934999403	17297466660	373042426296	8754481712
39	-1940096836	-33101 156302	-478 809964204	-8229926352
40	4221969137	79718300900	1641532494032	35018197920
41	-8903758084	-163586078926	-2 793424377040	-51106610852
42	19208110665	374927721428	7665060608076	151983829124
43	-40856793 461	-796243269742	-15002173968860	-273752308264
44	87866047787	1782844089528	37057168356652	694038101604
45	-187795694858	-3 850361954756	-77725687530 014	-1385891817602
46	403517351347	8526692750236	182456293328988	3260155117268
47	-864 759759311	-18563737025990	-395779410517728	-6844942177300
48	1858291322498	40898675755280	906220153528224	15539271241976

Triangular bond percolation			0
0	1	0	0
1	3	4	6
2	9	24	68

Table 1. (continued)

n	$\boldsymbol{S}(p)$	$\mu_{1,}(p)$	$\mu_{2 \prime}(p)$	$\mu_{2 x}(p)$
Triangular bond percolation				
3	25	104	442	54
4	66	384	2218	206
5	168	1284	9528	712
6	417	4012	36834	2294
7	1014	11924	131856	7024
8	2427	34100	445000	20656
9	5737	94584	1433294	58842
10	13412	255852	4444006	163250
11	31088	677850	13349510	443062
12	71506	1764482	39041224	1180156
13	163378	4523924	111583236	3092964
14	371272	11447870	312618368	7993116
15	839248	28636218	860662498	20401250
16	1889019	70907326	2333112020	51502616
17	4235082	173991368	6238124024	128748512
18	9459687	423469988	16474149036	319010540
19	21067566	1023162920	43023953304	784179992
20	46769977	2455645268	111230237224	1913668608
21	103574916	5858183260	284926172100	4639155964
22	228808544	13898041838	723731637254	11178566462
23	504286803	32804047708	1824124911010	26784974870
24	1109344029	77067740230	4564862407124	63851541584
25	2435398781	180271746166	11348210517840	151484343212
Triangular site percolation				
0	1	0	0	0
1	3	4	6	2
2	7	20	60	12
3	15	68	314	46
4	31	196	1240	144
5	62	512	4166	402
6	122	1256	12600	1040
7	235	2936	35324	2548
8	448	6628	93576	5992
9	842	14528	236944	13632
10	1572	31140	578764	30220
11	2904	65414	1371478	65486
12	5341	135276	3169380	139404
13	9743	275656	7165478	291770
14	17718	555216	15901324	602908
15	32009	1105726	34705018	1229242
16	57701	2182380	74661832	2482792
17	103445	4268906	158529158	4959014
18	185165	8290740	332756408	9836840
19	329904	15984420	691084378	19323246
20	587136	30638312	1421836528	37773464
21	1040674	58369924	2899678894	73182570
22	1843300	110665328	5867341452	141345292
23	3253020	208734268	11784640984	270647584
24	5738329	392103508	23512608484	517513972
25	10090036	733311754	46616228682	980893354
26	17736533	1366650536	91894597756	1859946412

3. Analysis of series

We have analysed the series using inhomogeneous differential approximants in the manner described by Guttmann (1987). This method is intrinsically superior to the standard Dlog Padé method for such series, as the latter method cannot accommodate additive analytic terms, as discussed above. Such terms slow the convergence of the Padé method. First-order inhomogeneous approximants can include such additive terms, while second-order approximants can additionally include a confluent singularity. It is commonly found that first-order approximants provide more stable estimates of the critical parameters than do second-order approximants, even when confluent terms are believed to be present. Such effects are due either to the weakness of the confluent term, or to the fact that unrealistically long series are usually required to detect the presence of such confluent terms. In any event, for the directed percolation problem, the correction to scaling exponent is believed to be very close to 1 (see I) and as such would be effectively indistinguishable from an analytic correction. Further evidence for the absence of a correction to scaling exponent is given in a recent paper by Baxter and Guttmann (1988). For all the above reasons then, we have based our analysis on first-order differential approximants only. It is fair to say that, despite the claimed superiority of differential approximants, the results we have obtained for the square lattice bond problem are no better than those obtained in I. The estimates for the triangular lattice series for both the site and bond problem are, however, new, as are the results for the square lattice site problem. These results provide additional evidence in support of the conjectured exponent values.

We first analysed the mean-size series for the bond and site problem on the square and triangular lattice. The results of our analysis are shown in tables 2 and 3. The method of analysis is described in Guttmann (1987). For a given number of series coefficients, inhomogeneous first-order differential approximants $[L / N+\Lambda ; N], \Lambda=$ $-1,0,1$ are formed, with L, the degree of the inhomogeneous polynomial, ranging from 1 to 8 , or 0 to 10 . Non-defective approximants are then used to give mean values of the exponent and critical point. These are defined to be approximants with no singularity, other than the physical singularity, in that region of the complex plane defined by

$$
\begin{equation*}
|\operatorname{Im}(z)|<0.005 \quad 0.0<\operatorname{Re}(z)<1.15 z_{c} \tag{3.1}
\end{equation*}
$$

where z is the expansion variable of the series, and z_{c} is the critical point, or in this case the percolation probability.

In table 2 we show some of the exponent and critical point estimates for the triangular lattice bond problem mean-size series, with L, the degree of the inhomogeneous polynomial ranging from 1 to 4 . Similar tables were constructed for the other three series (triangular site, square site and square bond) but to save space we present only a summary of these data in table 3 . Thus in table 3 we list the means, quoting an error equal to two standard deviations. The last column shows the number, l, of approximants used in forming the estimates, that is, defective approximants are not included, while the first column gives the number, n, of series coefficients used in forming the approximant. For the triangular lattice site problem, p_{c} and γ are steadily increasing. It is very difficult to judge the limit of these sequences, but a value of $2.7777 \ldots$ for γ seems entirely attainable. For the triangular lattice bond problem, the estimates are not monotonic, but there is a general upward trend, which has taken the estimate of γ slightly above $2.7777 \ldots$, but with error bars that encompass this value.
Table 2. First-order differential approximants to the mean-size series of the triangular lattice bond problem. Defective approximants are marked with an asterisk.

Number of approximant								
4	5	6	7	8	9	10	11	12
$L=1$								
0.4777261	-	-	0.4781210	0.4786385	0.4782323	0.4781625	0.4780377	0.4780240
-2.256 956 ${ }^{*}$	-	-	-2.285832	-2.338980	-2.296 832*	-2.302 808*	-2.280113	-2.278272
-	0.4785941	0.4785864	0.4784830	0.4781378	0.4780517	0.4781666	0.4780297	
-		-2.321744	-2.326006	-2.318421	-2.288 102*	-2.280845	-2.303685*	-2.279025^{*}
0.4778185	0.4782380	0.4784554	0.4783129	0.4781519	0.4779671	0.4779860	0.4780311	
-2.270819	-2.296048	-2.315881	-2.303876	-2.289 576*	-2.272552^{*}	-2.274521^{*}	-2.279 281	
$L=2$								
0.4777334	0.4784094	-	0.4778496	0.4781087	0.4780242	0.4784531	0.4780242	
-2.263758	-2.303 783	-	-2.266812	-2.286115	-2.278 398	-2.409047^{*}	-2.278373	
0.4776218	-	0.4782818	0.4781876	0.4781273	0.4780230	0.4780295	0.4780281	
-2.258692	-	-2.298 495	-2.293132	$-2.287418 *$	-2.278 292	-2.279 048	-2.278832	
-	-	0.4784641	0.4780947	0.4779219	0.4780248	0.4780266		
-	-	-2.316743	-2.285057	-2.268 856	-2.278472	-2.278659		
$L=3$								
0.4775406	0.4780120	0.4781400	0.4780317	0.4779801	0.4780180	0.4780283	0.4780287	
-2.254600	-2.278681	-2.286920	-2.278 708	-2.273 599*	-2.277 716	-2.278898	-2.278968	
0.4779907	-	0.4780035	0.4780516	0.4779899	0.4780287	0.4780273		
-2.277471	-	-2.276845	-2.280 496	$-2.274538 *$	-2.278946	-2.278 788		
0.4778905	0.4773235	0.4780768	0.4780315	0.4779938	0.4780284	0.4780304		
$-2.270916 *$	-2.241 914*	-2.282781	-2.278 472*	-2.274 853*	-2.278910	-2.279311^{*}		
$L=4$								
0.4780015	0.4778674	0.4780733	0.4781013	0.4779935	0.4780174	0.4780267		
-2.278263	-2.270484^{*}	-2.283 055	-2.285 232	-2.274968*	-2.277652	-2.278717		
0.4779687	0.4780981	0.4781449	0.4774186	0.4780172	0.4781740	0.4780281		
-2.275930	-2.284401	-2.289 117	-2.194 452*	-2.277632	-2.301 582	-2.278882		
0.4781256	0.4780443	0.4782112	0.4779764	0.4780151	0.4780267			
-2.286283	-2.280 506	-2.294 595	-2.272 875*	-2.277390	-2.278709			

Table 3. Results of the analysis of the mean-size series by first-order differential approximants. See text for explanation of n and l.

n	$p_{\text {c }}$	γ	1
Triangular lattice site problem			
20	0.599530 (637)	2.2700 (372)	10
21	0.595575 (67)	2.2703 (60)	9
22	0.595582 (45)	2.2711 (46)	10
23	0.595620 (30)	2.2749 (39)	8
24	0.595627 (32)	2.2754 (39)	12
25	0.595632 (69)	2.2761 (80)	12
26	0.595633 (66)	2.2763 (86)	13
Triangular lattice bond problem			
19	0.478082 (168)	2.2833 (152)	10
20	0.478009 (66)	2.2767 (64)	15
21	0.478010 (38)	2.2768 (40)	11
22	0.478018 (14)	2.2777 (16)	10
23	0.478024 (23)	2.2785 (26)	13
24	0.478026 (7)	2.2786 (10)	15
25	0.478025 (7)	2.285 (11)	11
Square lattice site problem			
40	0.705503 (70)	2.2805 (106)	5
41	0.705516 (41)	2.2831 (71)	3
42	0.705515 (32)	2.2829 (55)	2
43	0.705500 (59)	2.2802 (108)	5
44	0.705507 (21)	2.2813 (41)	7
45	0.705500 (37)	2.2797 (73)	3
46	0.705504 (49)	2.2807 (96)	7
47	0.705489 (21)	2.2778 (43)	7
48	0.705491 (11)	2.2781 (22)	7
Square lattice bond problem			
40	0.644696 (2)	2.2767 (2)	3
41	0.644696 (2)	2.2766 (3)	11
42	0.644695 (1)	2.2764 (2)	8
43	0.644696 (4)	2.2767 (8)	9
44	0.644695 (3)	2.2767 (9)	9
45	0.644696 (2)	2.2767 (3)	5
46	0.644697 (1)	2.2769 (3)	9
47	0.644697 (3)	2.2769 (6)	17
48	0.644698 (5)	2.2771 (11)	12
49	0.644698 (3)	2.2771 (7)	11

Combining the results for the bond problem in the manner discussed in Guttmann (1987), which weights entries according to their associated error, gives the composite result

$$
p_{c}=0.478023 \pm 0.000005 \quad \gamma=2.2782 \pm 0.0007 .
$$

For the square lattice site problem, the results are generally trending downward, and a limit around 2.278 appears entirely attainable. The results for the square lattice bond problem are seen to be steadily increasing, and a limit around 2.278 is estimated. The difficulty in extrapolating these trends is that the nature of the convergence has been found not to be uniform (Guttmann 1988). Rather, it is found that trends continue
until, at a certain value of n (the number of series coefficients used in forming the estimates), the estimates of the critical parameters stabilise. It is as if a certain number of terms is needed to successfully represent the function. Below this number, we get increasingly good estimates of the critical parameters as the number of terms increases.

For all four series a value of $\gamma=2.278 \pm 0.002$ is consistent with our results. If we now make the assumption that this exponent is represented by a 'simple' rational fraction, where by 'simple' we mean a fraction with a denominator less than 100 , we are immediately led to $41 / 18$. Tentatively accepting this value, we obtain estimates of p_{c} for all four series by linear regression on the estimates used to give the results in table 3 (as described in Guttmann (1987)). In this way we find

$$
\begin{array}{ll}
p_{c}=0.595646 \pm 0.000003 & \text { triangular site problem } \\
p_{\mathrm{c}}=0.478018 \pm 0.000002 & \text { triangular bond problem } \\
p_{\mathrm{c}}=0.705489 \pm 0.000004 & \text { square site problem } \\
p_{\mathrm{c}}=0.644701 \pm 0.000001 & \text { square bond problem. }
\end{array}
$$

To analyse the first- and second-moment series, which are not as well behaved as the mean-size series, we fix the value of p_{c} to the value quoted above, and estimate the exponent from the biased differential approximants. In tables 4 and 5 we show typical biased estimates of the exponents for the square lattice bond problem zeroth- and second-moment series. Table 4 shows the estimate of the exponent for the mean-size series (the zeroth moment), and it is readily apparent that the exponent value $2.2777 \ldots$ is well supported. Table 5 gives estimates of the second moment, $\left\langle x^{2}\right\rangle$, exponent $\gamma+2 \nu_{\nu}$, for which we find the value 4.4716 ± 0.0003, while the corresponding table for $\gamma+2 \nu_{\|}$(not shown) gives 5.7455 ± 0.0005. For the triangular lattice bond problem we find the corresponding biased estimates are $\gamma+2 \nu_{\perp}=4.472 \pm 0.002$ and $\gamma+2 \nu_{\|}=5.7455 \pm 0.002$ respectively. The error bars reflect the scatter of the estimates, but do not include errors associated with the uncertainty in p_{c}. For the square lattice bond problem, the possible error in p_{c} would only cause a variation of a few parts in the last place quoted, while for the less precise triangular lattice exponents, the corresponding error is no more than 1 in the last digit quoted.

These results, combined with our assumed result for γ, give $\nu_{\perp}=1.0969 \pm 0.0003$ and $\nu_{\|}=1.7339 \pm 0.0003$. The closest 'simple' fractions are $79 / 72=1.097222$ and $26 / 15=1.7333 \ldots$ respectively. These sum to $\nu_{\perp}+\nu_{\|}=2.8308 \pm 0.0006$. Using our numerical estimate of γ rather than the conjectured exact value gives $\nu_{\perp}+\nu_{\|}=$ 2.8306 ± 0.0026 for the sum. The corresponding results for the site problem are less well behaved. For the triangular lattice site problem we obtain $\gamma+2 \nu_{\| \|}=5.745 \pm 0.005$ and $\gamma+2 \nu_{\perp}=4.473 \pm 0.003$ respectively. These estimates are consistent with those quoted above, though they are of lower precision. The sum of the correlation function exponents is still 2.831 . For the square lattice site problem, the precision is lower still. We find $\gamma+2 \nu_{l}=5.743 \pm 0.010$ and $\gamma+2 \nu_{\perp}=4.471 \pm 0.007$. These results are therefore consistent with, but of lower precision than, those for the bond problem. This observation is also true for the 'ordinary', i.e. non-directed, percolation problem.

Taking the above estimates $\gamma=2.278 \pm 0.002$ and $\nu_{\perp}+\nu_{\|}=2.8306 \pm 0.0026$, scaling gives $\beta=0.277 \pm 0.002$, and $\alpha=-0.831 \pm 0.002$. These values are just consistent with the fractions $\beta=5 / 18=0.2777 \ldots$ and $\nu_{\perp}+\nu_{\|}=2 \frac{5}{6}=2.8333 \ldots$ cited in § 1 . If, however, we stick to the conjectured value of $\gamma=2.2777 \ldots$, then we obtain $\beta=0.2765 \pm 0.0003$ and $\alpha=-0.8308 \pm 0.0003$. We note that $199 / 720=0.27638 \ldots$ and $-299 / 360=$
Table 4. Biased estimates of the exponent of the mean-size series for the square lattice bond problem.

Number of approximant										
14	15	16	17	18	19	20	21	22	23	24
$\mathrm{L}=1$										
-2.277 242	-2.277228	-2.277 229*	-2.277 230	-2.277283	-2.277116^{*}	-2.278883^{*}	-2.277 319*	-2.276960	-2.277 442	-2.277634^{*}
-2.277220	-2.277222	-2.277222	-2.277 182*	-2.277006^{*}	-2.277176	-2.276 976*	-2.276862	-2.276886	-2.277 378*	-2.277 492
-2.277238	-2.277212	-2.276942^{*}	-2.277025^{*}	-2.277762	-2.277188	-2.277275	-2.276941	$-2.277406 *$	-2.279162^{*}	
$L=2$										
-2.277145	-2.277 241^{*}	-2.277224	-2.277171^{*}	-2.276 802* *	-2.278 245*	-2.276 941*	-2.277 505*	-2.276 890*	-2.277658	-2.277 787*
-2.277225	-2.277218	-2.277205^{*}	-2.277187^{*}	-2.276888^{*}	-2.277291	-2.277041^{*}	-2.276951	-2.276872	-2.277688^{*}	
-2.277211	-2.277245	-2.277 178*	-2.277010^{*}	-2.276985^{*}	-2.277022^{*}	-2.277409	-2.276883	$-2.277479 *$	-2.277603	
$L=3$										
-2.277234	-2.277218	-2.277 213*	-2.277 244	-2.276430^{*}	-2.276 864*	-2.277 664*	-2.277 838*	-2.277 763*	-2.277 706*	
-2.277 216	-2.277219**	-2.277 203*	-2.277160^{*}	-2.277 813*	-2.277420	$-2.278076 *$	-2.277841*	-2.277817*	-2.277 713*	
-2.277218	-2.277 209**	-2.277972^{*}	-2.277 073*	-2.277248	-2.276 555*	-2.277 766*	-2.277719^{*}	-2.277 733*		
-2.271 251	-2.277 197	-2.277315	-2.277 193*	-2.296 712*	-2.277455	-2.277 834*	$-2.277837 *$	-2.277790^{*}	-2.266519^{*}	
-2.277205	-2.277 225*	-2.277271	-2.277139^{*}	-2.277320	-2.277 369*	$-2.277908 *$	-2.277728^{*}	-2.277777^{*}		
-2.277198	-2.277162^{*}	-2.277140^{*}	$-2.276991 *$	-2.277 526*	-2.279 707*	-2.277696^{*}	-2.277682^{*}	-2.277 765*		
$L=5$										
-2.277 261	-2.276 780*	-2.277 311	-2.278435	-2.277601	-2.277766	-2.277 808*	-2.277744	-2.277779^{*}		
-2.277 199	-2.277 296 *	-2.276801^{*}	-2.277491	-2.279 658*	-2.277769	-2.277783^{*}	-2.277751	-2.277772^{*}		
-2.277186	$-2.276988 *$	-2.277 142*	-2.277748	-2.278 016	-2.277641	-2.277 732*	-2.277788			

Table 4. (continued)

Number of approximant										
14	15	16	17	18	19	20	21	22	23	24
$L=6$										
-2.277092*	-2.279 752*	-2.316 083*	-2.277 564*	-2.277 743*	-2.277770	-2.277 838*	-2.277762	-2.277770^{*}		
-2.277 100*	-2.277 134*	-2.277 792*	-2.277 457*	-2.277 389*	-2.277 714*	-2.277764	-2.277770^{*}			
-2.277213	-2.276 904*	-2.277 522*	-2.277 998*	-2.277720^{*}	-2.277684*	-2.277763	-2.277770^{*}			
$L=7$										
-2.277 099*	-2.276651^{*}	-2.277 818*	-2.278 854*	-2.277657*	-2.277 689*	-2.277748	-2.277 759*			
-2.277 172*	-2.277 429*	-2.277736^{*}	-2.277914^{*}	-2.276 852*	-2.277 693*	-2.277762	-2.277770^{*}			
-2.277221	-2.277 839*	-2.277017^{*}	-2.278 113*	$-2.27771{ }^{*}$	-2.277 704*	-2.277 715*				
$L=8$										
-2.277 115*	-2.277343*	-2.277 585*	-2.277 834*	-2.277769^{*}	-2.277 668*		-2.277784^{*}			
$-2.277123 *$	-2.276 236 *	-2.277582*	-2.277468^{*}	-2.277548^{*}	-2.277920*	-2.277776^{*}				
-2.277 727*	-2.277 554*	-2.277779*	-2.279011^{*}	-2.282 763*	-2.277794^{*}	-2.277 780*				
$L=9$										
-2.277608	-2.277 874^{*}	-2.277 589*	-2.277 613*	-2.277 647*	-2.277 746	-2.277771				
-2.277 746*	-2.277679	$-2.27860{ }^{*}$	-2.277607*	-2.277 609*	-2.277769	-2.277 781*				
-2.277750	-2.277480^{*}	-2.277 586*	-2.277673^{*}	-2.278 041*	-2.277 760					
$L=10$										
-2.277 745*	-2.277778*	-2.277654*	-2.277 629*	-2.266058*	-2.277 758	-2.277 793*				
-2.277 745*	-2.278 355*	-2.277645*	-2.277666^{*}	-2.276 934*	$-2.27780{ }^{*}$					
-2.277747^{*}	-2.277562^{*}	-2.277666*	-2.277655*	-2.277 878*	$-2.27779{ }^{*}$					

Table 5. Biased estimates of the exponent for the second-moment series $\mu_{2,0}$ for the square lattice bond problem.

Number of approximant										
14	15	16	17	18	19	20	21	22	23	24
$L=1$										
-4.472646	-4.472 155*	-4.448 897*	-4.471 649	-4.471710	-4.471718	-4.471709	-4.471716	-4.471 688	-4.471667	-4.471618
-4.472 081**	-4.471 850**	-4.471646	-4.471670	-4.471 709*	-4.471714	-4.471 652	-4.471 697	-4.471704^{*}	-4.471 667	
-4.472 535*	-4.471 782^{*}	-4.471 641	-4.471712	-4.471 720	-4.471 706	-4.471734^{*}	-4.471 690	-4.471667	-4.471667^{*}	
$\boldsymbol{L}=2$										
-4.471 936*	-4.471473	-4.492 182*	-4.471 690	-4.471757	-4.471717	-4.471 721*	-4.471 688	-4.471 692^{*}	-4.471 613	
-4.472063*	-4.897072*	-4.472650	-4.471663	-4.471717	-4.471713	-4.471704	-4.471 684	-4.471 710^{*}	-4.471631	
-4.471 768*	-4.471511^{*}	-4.471 673	-4.471601^{*}	-4.471718	-4.471 729^{*}	-4.471692	-4.471 694*	-4.471650		
$L=3$										
-4.473 667*	-4.469 655*	$4.471376 *$	-4.471 794	-4.471 583*	-4.471 592^{*}	-4.471600^{*}	-4.471690	-4.471 641	-4.471 579*	
-4.472690^{*}	-4.471 394**	-4.472 340*	-4.471875	-4.471 719	-4.471 671	-4.471 682	-4.471 753^{*}	- -4.471627^{*}		
-4.470 393*	-4.471 408*	-4.471717	$-4.47177{ }^{*}$	-4.471 749*	$-4.4716 .33^{*}$	-4.471698	-4.471 656	-4.471640		
$L=4$										
-4.470 152*	-4.472 236	-4.474245*	-4.471831	-4.471 728	-4.471 647	-4.471 644	-4.471 645	-4.471 647*		
-4.471 868	-4.472 452*	-4.470 886^{*}	-4.471730	-4.471715^{*}	-4.471 615^{*}	-4.471 658	-4.471 645	-4.471642^{*}		
-4.472 254^{*}	-4.474 359*	-4.471786	-4.471729	$-4.471891 *$	-4.471 801*	-4.471 638*	-4.471643^{*}	- 1		
$L=5$										
-4.472619^{*}	-4.472226	-4.472 114	-4.471993	-4.471 656*	-4.471 647	-4.471 648	-4.471 645	-4.471 643^{*}		
-4.472 294	-4.472 305*	-4.471911	-4.471728	-4.471 649*	-4.471660	-4.471644^{*}	-4.471 642^{*}			
-4.472358*	-4.472 248	-4.473230^{*}	-4.471 695*	-4.479682^{*}	-4.471607^{*}	-4.471646	-4.471643^{*}			

Table 5. (continued)

Number of approximant										
14	15	16	17	18	19	20	21	22	23	24
$L=6$										
-4.470 030*	-4.472 413*	-4.472 100*	-4.471 501*	-4.471 649*	-4.471 648	-4.471640	-4.471 646*			
-4.472 150	-4.472 116	-4.471859	-4.471 565*	-4.471 651	-4.471643	-4.471 646*	-4.471 643*			
-4.472 798*	-4.471 792	-4.471 657	-4.471650	-4.471 604*	--4.471 641	-4.471 646*				
$L=7$										
-4.472 198	-4.471 595	-4.471665	-4.471 515*	-4.471 578*	-4.471 635	-4.471 640	-4.471 677*			
-4.471912	-4.471781	-4.471 467*	-4.471 733*	-4.471618	-4.471 640	-4.471643				
-4.471733	-4.471787	-4.471600	-4.471635	-4.471 621*	-4.471 630*	-4.472 411*				
$L=8$										
-4.472677*	-4.471805	-4.471 728^{*}	-4.471 682*	-4.471 558*	-4.471 638	-4.471640				
-4.471713	-4.471710^{*}	-4.471 613*	-4.471 556*	-4.469 471**	-4.471 646	-4.472 $268{ }^{*}$				
-4.471762	-4.471 695*	-4.471 641*	-4.471 534*	-4.471631	-4.471 619^{*}					
$L=9$										
-4.471 755*	-4.471 946*	-4.471 627	-4.471 642	-4.472 054*	-4.471 643	-4.471 640				
-4.471 767*	-4.471 700*	-4.471651	-4.471 546*	-4.471 583*	-4.471 640*					
-4.471758	-4.471 465*	-4.471655	-4.471 189*	-4.471 640*	-4.471 632					
$L=10$										
-4.471 771*	-4.471 706*	-4.471 655*	-4.471 606*	-4.471624	-4.471638					
-4.471 788	-4.471 704*	-4.471647	-4.471 556*	-4.471638	-4.471 673*					
-4.471 693*	-4.471 660*	-4.471 176*	-4.471 642*	-4.471640*						

$-0.8305 \ldots$ and that these fractions follow from the conjectured values and the scaling relations.

Despite the apparent precision of the second-moment exponent estimates, it is worth remembering that such composite series, by which we mean series that depend on more than one exponent, are generally considerably less reliable than those series that are characterised by a single exponent. Thus while the errors quoted above do reflect the self-consistency of the exponent estimates, it would be a mistake to interpret them as absolute bounds. This is seen, for example, in the series for the square end-to-end distance in self-avoiding walks. That composite series diverges with exponent $\gamma+2 \nu$, and gives considerably less accurate exponent estimates than the walk generating function series which diverges with exponent γ (Guttmann 1987). Alternative analyses, such as forming the quotient series $\mu_{2,0} / S$ and $\mu_{0,2} / S$ should give series which diverge at p_{c} with exponents $2 \nu_{\perp}$ and $2 \nu_{\|}$respectively. In this way we find identical estimates for the exponents to those quoted above, without using the estimate of γ.

Turning now to the first-moment $\langle t\rangle$ series, the exponent for this series is $\gamma+\nu_{\|}$, and biased estimates were obtained as for the second-moment series. These are

$$
\begin{array}{ll}
\gamma+\nu_{\|}=4.008 \pm 0.002 & \text { triangular site } \\
\gamma+\nu_{\|}=4.0111 \pm 0.0003 & \text { triangular bond } \\
\gamma+\nu_{\|}=4.012 \pm 0.002 & \text { square site } \\
\gamma+\nu_{\|}=4.0115 \pm 0.0004 & \text { square bond }
\end{array}
$$

Again we see that the bond problem estimates are more accurate than the site problem estimates, and combining these with the conjectured value of γ gives $\nu_{\|}=$ 1.7336 ± 0.0006, a result entirely consistent with that obtained from the second-moment series. We have also analysed the first-moment bond problem series without biasing, and obtain the following results:
$\begin{array}{lll}p_{c}=0.478025 \pm 0.000006 & \gamma+\nu_{\| \|}=4.013 \pm 0.0009 & \text { triangular bond } \\ p_{\mathrm{c}}=0.644697 \pm 0.000006 & \gamma+\nu_{\|}=4.010 \pm 0.001 & \text { square bond. }\end{array}$
These values are in complete accord with those quoted above, both from other series and from different analyses.

4. Discussion

As mentioned in the introduction, the theory of conformal invariance is not applicable to such non-translationally invariant problems as this. Nevertheless, it is perhaps interesting to look at the scaling indices for this problem to see if perchance they do correspond to a set of values characterised by a particular central charge. From the relation $2 / y_{\mathrm{T}}=2-\alpha$ and $x_{\mathrm{T}}+y_{\mathrm{T}}=2$, we obtain $x_{\mathrm{T}}=1318 / 1019$. It is clear that this does not correspond to any simple realisation of the Kac formula, or any reasonable value of the central charge. The same is true of the simpler set of exponents which we rejected.

In a recent paper (Baxter and Guttmann 1988) we have studied the percolation probability series, which gives a direct estimate of the exponent β. This supports the conjectured values quoted in \& 1 . It is hoped that the conjectured exact exponent set
may help in the search for an exact solution. In conclusion we remark that the numerically close exponent set $\nu_{\perp}+\nu_{\|}=17 / 6, \beta=5 / 18, \alpha=-5 / 6$ and $\delta=46 / 5$ is aesthetically far more satisfactory, but regrettably is not as well supported numerically as those to which we have reluctantly been led: $\gamma=41 / 18, \nu_{\perp}=79 / 72, \nu_{\|}=26 / 15, \beta=$ 199/720, $\alpha=-299 / 360$ and $\delta=1839 / 199$. While we are sympathetic with the view that these horrible fractions appear far less likely than the numerically close set mentioned, the numerical evidence is firmly in favour of the values we have conjectured. The only additional comment we can offer is that perhaps such unappealing exponents are characteristic of directed problems.

Acknowledgments

AJG would like to thank John Cardy for introducing him to this problem, and the Australian Research Grants Scheme for financial support.

References

Adler J, Moshe M and Privman V 1981 J. Phys. A: Math. Gen. 14 L363
Baxter R J and Guttmann A J 1988 J. Phys. A: Math. Gen. 213193
Bhatti F M and Essam J W 1984 J. Phys. A: Math. Gen. 17 L67
Blease J 1977 J. Phys. C: Solid State Phys. 103461
Cardy J 1987 Phase Transitions and Critical Phenomena vol 11, ed C Domb and J Lebowitz (New York: Academic) pp 55-126
De'Bell K and Essam J W 1983 J. Phys. A: Math. Gen. 16385
Essam J W 1972 Phase Transitions and Critical Phenomena vol 2, ed C Domb and M S Green (New York: Academic) pp 197-270
Essam J W, De'Bell K and Adler J 1986 Phys. Rev. 331982
Guttmann A J 1987 J. Phys. A: Math. Gen. 201839

- 1989 Phase Transitions and Critical Phenomena vol 12, ed C Domb and J Lebowitz (New York: Academic) to be published
Guttmann A J and Joyce G S 1972 J. Phys. A: Gen. Phys. 5 L81
Joyce G S and Guttmann A J 1973 Padé Approximants and their Applications ed P R Graves-Morris (New York: Academic) pp 163-8
Rehr J J, Joyce G S and Guttmann A J 1980 J. Phys. A: Math. Gen. 131587

