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Abstract. Extended series expansions for the mean size and the first and second moments 
of the pair connectedness for both bond and site percolation on the directed square and 
triangular lattices have been obtained. Analysis based on differential approximants allows 
the critical percolation probabilities and exponents to be estimated, and as a result the 
critical exponents are conjectured to be y = 41/18, vI = 79/72 and vi, = 26/15. Scaling 
then gives p = 1991720, LY = -2991360 and S = 18391199. 

1. Introduction 

In an earlier paper (Essam er a1 1986, hereafter referred to as I), we reported on an 
analysis of the first 35 terms of the moments of the pair connectedness Ci (p) for bond 
percolation on the directed square lattice. The moments studied are defined as follows: 

S=I*O=C Gib) ~ 2 x = ( x ~ > = C x f C i ( ~ )  ~ 2 t = ( r ~ ) = C  tfCi(p) (1.1) 
where xi  and ti are the coordinates of the ith lattice site perpendicular and parallel to 
the preferred (1, 1) direction. The zeroth moment is the mean-size series, and its critical 
exponent is usually denoted y. The two second-moment series have exponents y + 2 vI 
and y + 2 Y,, respectively. 

These series were generated and extended by supplementing the transfer-matrix 
method of Blease (1977) with a weak subgraph expansion (De’Bell and Essam 1983) 
and extended using a Dyson equation. Further details are provided in 0 2. 

In I, the series for the square lattice bond percolation problem were investigated 
using standard Pad6 methods and the method of Adler er a1 (1981) which is designed 
to reveal and identify confluent exponents. While these methods, combined with the 
longer series, gave considerably improved exponent and percolation probability esti- 
mates, the claimed errors were perhaps optimistic, as the methods of analysis could 
not cope with certain functional features believed to be present in the moment series, 
such as an additive analytic background term. To illustrate this point, if one takes a 
series, and performs a Dlog Pad6 analysis on the series, certain exponent and critical 
point estimates will emerge. If one then changes the first term in the series by one, 
say, repetition of the analysis gives rise to a slightly different set of estimates. Such a 
change simulates a background term. The method of differential approximants 
(Guttmann and Joyce 1972, Joyce and Guttmann 1973, Rehr et a1 1980) can accommo- 
date such changes, as well as confluent singularities, logarithmic divergences and most 
of the functional features expected in non-pathological models of statistical mechanical 
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systems. In 5 3, we analyse the new series, which have been substantially extended. 
We also analyse the new first-moment series, plr = ( t )  = I: tic, ( p ) .  

Recent understanding of two-dimensional lattice models has led to the belief that 
critical exponents for such systems should be simple rational fractions. Such a con- 
clusion follows from conformal invariance theory (Cardy 1987) in which case the 
various operators are quantised, giving rise to rational exponents. 

Conformal invariance theory requires that the correlation functions be invariant 
under translation. In the problem of directed percolation all correlation functions are 
defined relative to a particular source and (once the source has been chosen) transla- 
tional invariance is completely destroyed. However, there is still rotational invariance 
about the axis through the source parallel to the special direction. 

Nevertheless, we examine the possibility that rational exponents will be found even 
in this case. Indeed, if we look at the exponent estimates in I, which were y =  
2.277 21 f 0.0003, vL = 1.0972 f 0.0006 and vll = 1.7334 f 0.001 (with additional uncer- 
tainties proportional to the error in p c )  and seek the most ‘obvious’ exact fractions, 
then y = 41/18 = 2.277 777.. . , U,. = 79/72 = 1.097 2222.. . and vll = 26/15 = 1.733 333 
suggest themselves. The value for y is particularly appealing as the value of the 
corresponding exponent for ordinary percolation is y = 431 18 = 2.388 88 . . . , while the 
correlation function exponent v L  is less convincing, with its large denominator. It 
must be remembered that it is the directed nature of this problem that gives rise to 
two distinct correlation exponents, and so any non-simple aspect of the problem might 
be expected to manifest itself in the value of the correlation function exponents. The 
scaling law p = ( v11 + vL - y)/2 then gives p = 1991720, while the scaling law a + 2p + 
y = 2 gives a = -299/360. Both these values have unusually large denominators, 
while increasing the numerators just by 1 yields the far simpler and certainly more 
appealing fractions /3 = 5/18 and a = -5/6. These would imply that vIl + vL = 17/6. In 
Q 3 we argue that the numerical evidence favours the former exponent set. In 9 4 we 
return to the question of conformal invariance and point out that our conjectured 
exponent values do not correspond to any single family of exponents, as characterised 
by a particular central change. 

2. Derivation of series expansions 

Low-density series expansions for the mean cluster size and spatial moments of directed 
lattice percolation models have previously been obtained using a transfer-matrix 
method for the pair connectedness (Blease 1977, De’Bell and Essam 1983). Here we 
show that the same transfer-matrix method used in conjunction with non-nodal graph 
expansions allows the length of the series obtained by the basic transfer-matrix method 
to be doubled. 

2.1. Non-nodal graph expansions 

Let S( 1 )  be the expected number of sites which are connected to the origin and whose 
distance from the origin measured parallel to the preferred direction is t. In terms of 
S (  t )  the mean cluster size and first two parallel moments of the cluster mass distribution 
are given, respectively, by 
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where the dependence on p has been suppressed and S(0) = 1 .  The function S (  t )  is 
related to the pair connectedness C(x, t )  by 

where the sum is over all lattice sites whose parallel distance from the origin is t and 
the vector x is the component of the position vector of a given such site perpendicular 
to the preferred direction. The function 

X ( t ) = C x Z C ( x ,  t )  
X 

(2.3) 

will also be considered and serves to determine the second perpendicular moment of 
the cluster mass distribution 

The pair connectedness C(x, 1 )  may be expressed (Essam 1972) as a sum over all 
subgraphs of the lattice graph which may be formed by taking unions of possible 
directed paths connecting the origin to the site (x, t ) :  

where e is the number of random elements (sites or bonds) in g and in the case of 
site percolation the site at the origin, which is the source, is not counted as a random 
element. A graph g is nodal if there is an intermediate vertex through which all the 
above-mentioned paths must pass. This vertex is called a nodal point. The non-nodal 
contribution S " ( t )  to S ( t )  is defined by the above sum over graphs (2.5) restricted to 
non-nodal graphs. By convention S"(0)  = 0. If g is the series combination of graphs 
g ,  and g,,  so that their common vertex is a nodal point, then the d weight d ( g )  
factorises as the product of the d weights for the two separate graphs. This was used 
by Bhatti and Essam (1984) to show that S satisfies a 'Dyson equation': 

S = l + S N S  (2.6) 
where, here and below, the superscript N denotes that S (  t )  has been replaced by SN( t )  
in this case in the definition (2.1) of S, and following the derivation of Bhatti and 
Essam we obtain, for r 3 1: 

S ( t ) =  S N ( t ' ) S ( t - t ' )  
I , =  1 

from which (2.6) follows by summation over t .  
Using the definition of p l r  (2.1) together with (2.7) 

pl, = t S " ( t ' ) S ( t -  t ' )  
t = 1  r ' = l  

= 2 (t '"'')S""')S(t") 

= I* :,s + SNpl, .  

,'= 1 ,"=O 

(2.7) 

Combining (2.9) and (2.6) 

Plt = p;s2. (2.10) 
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Similarly, replacing ( t ’ +  t ” )  by ( t ’ +  c ” ) ~  in (2.8) 

(2.11) 

The corresponding relation for p2x may be obtained by substituting (2.5) into (2.3) 
and then following Bhatti and Essam’s derivation of (2.6) with the result, for t 2 1 :  

(2.12) 

where we have assumed that the symmetry of the lattice is such that the first perpen- 
dicular moment of the cluster mass distribution, restricted to atoms with coordinate t, 
is zero. Notice that X(0) = 0 and by convention XN(0)  = 0. Summing over t and using 
(2.4) and (2.6), we obtain 

(2.13) N 2  PLZX = w 2 x s  * 

2.2. Series expansion algorithm 

In a previous paper it was shown how S(  t )  and X (  t )  could be obtained by t iterations 
of a transfer matrix. These functions are polynomials in p and from (2.5) it follows 
that the powers of p less than m( t )  are zero, where m( t )  is the length of the shortest 
walk required to reach a site whose parallel distance from the origin is t. For the 
square lattice m( t )  = t but for the triangular lattice m (  t )  = [( t + 1)/2], where [ ] denotes 
integer below. Therefore if S (  t ’ )  and X( t’) are determined for t 4 t to order m( t + 1 )  - 1 
then the mean size and moments will be determined to order m( t + 1) - 1 .  For t 3 2 
the functions S ” ( t )  and XN(t) are polynomials, the leading power of p of which is 
determined by the smallest number of random elements n ( t )  which are needed to 
provide two parallel paths, the intermediate vertices of which are disjoint. For bond 
percolation on the square lattice n(  t )  = 2t and for the triangular lattice n (  t )  = t + 1. In 
the case of site percolation n(  t )  is one less than for bond percolation since both paths 
have the same terminal vertex (the initial vertex is considered to be non-random). In 
any case n ( t )  is approximately 2 m ( t )  which is the key to the following improved 
algorithm. The steps are as follows. 

(i) Use the transfer-matrix method to obtain the polynomials S (  t ’ )  and X (  t ’ )  for 
t ’ S  t to order n(  t + 1 )  - 1 (rather than m( r + 1 )  - 1 as in the standard method). 

(ii) Set S N ( l ) = S ( l )  and X N ( l ) = X ( l ) .  
(iii) For 2 4  t’=z t use the recurrence formulae 

t ‘ - I  

1”= 1 
SN(t’)=S(t‘)-  c S ” ( t ” ) S ( t ’ - t ” )  (2.14) 

and 
r ’ - 1  

x N ( t ’ ) = x ( t ’ ) -  1 [ ~ ~ ~ t ” ) ~ ( t ‘ - t ’ ‘ ) + ~ ~ ( t ’ ’ ) ~ ( t ‘ -  t”)] (2.15) 
1’’= 1 

to determine SN(t’) and XN(t’) correct to order n ( t + l ) - 1 .  These formulae follow 
by rearrangement of equations (2.7) and (2.12). 

(iv) Form the sums (2.1) and (2.4) as far as t ,  with S and X replaced by SN and 
XN, using the truncated polynomials SN(t’) and XN(t’)  of (iii) to obtain SN, pfll, p,”, 
and pyx correct to order p n ( r t l ) - l  (notice that the corresponding sums using S (  t )  and 
X( t )  would only be correct to p m ( ‘ + l ) - l )  ). 
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(v) Use formulae (2.6),(2.10),(2.11) and (2.13) to obtain S , p l r , ~ 2 ,  and p Z x  

We illustrate the algorithm by the following example and our results obtained by 

For the square lattice bond problem with t = 3, n( t + 1) - 1 = 7, the transfer-matrix 

correct to order p n c t + ’ ) - l .  

programming the algorithm are listed in table 1. 

method could be used to obtain the following S and X polynomials: 

S(1)=2p S(2) =4p2-p4 

X(1)=2p  X(2)  = 8 p 2  

s (3)  = 8 p 3  - 4p5 - 2p6 + 2p7 

X(3)  = 24p3 - 4p5 - 2p6+ 2p7 

from which we deduce 

SN(1)=2p  S N ( 2 )  =S(2)-SN(1)S(1)=4p2-p4-(2p)2= -p4 

sN(3)=s(3)-sN(1)s(2)-sN(2)s(1)= -2p6+2p7 

XN( l )  = 2p XN(2)=X(2)-SN(1)X(1)-XN(1)S(1)=0 

~ ~ ( 3 )  = x ( 3 ) -  ~~(i)x(2)-~~(2)x(i)-~~(i)~(2)-~~(2)~(1) = -2p6+2p7. 

Notice the cancellation of the lower-order terms on conversion to non-nodal form. Now 

s” = SN ( 1) + S N (  2) + SN (3) + 0 ( p 8 )  = 2p - p4 - 2p6+ 2p7 + 0 ( p S )  

p f: = SN ( 1 ) + 2SN (2) + 3 SN (3) + O ( p s )  = 2p - 2p4 - 6p6 + 6p7 + O ( p s )  

p: = SN( 1) +4SN(2) +9SN(3)  + O ( p 8 )  = 2p -4p4 - 18p6+ 18p7+0(ps)  

pyx = XN(l )  + XN(2) + x N ( 3 ) + o ( p 8 )  = 2p -2p6+2p7+0(p8)  

and from (2.6) 

(1 - SN)S = (1 -2p +p4+2p6-2p7+0(p8))S = 1 

and hence 

S = 1 + 2p + 4p2 + 8 p 3  + 15p4+ 28p5 + Sop6 + 90p7 + O ( p 8 )  

and 

S 2  = 1 + 4p + 1 2p2 + 32p3 + 78p4 + 1 8 0 ~ ’  + 396p6 + 0 ( p 7 ) .  

Substituting the above results in (2.10), (2.11) and (2.13) gives 

p l r  = 2p+8p2+24p3+62p4+ 148p5+330p6+710p7+O(p8) 

p 2 r  = 2p + 16p2 + 72p3 + 252p4+ 764p5 + 2094p6 + 5362p7 + O ( p s )  

p2x = 2p + 8 p 2 +  24p3 + 64p4+ 156p5+ 358p6+786p7 + O ( p s ) .  
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Table 1. The series expansions for the square lattice bond and site problem and for the 
triangular lattice bond and site problems. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

1 
2 
4 
8 

15 
28 
50 
90 

156 
274 
466 
804 

1348 
2 300 
3 804 
6 450 

10 547 
17 784 
28 826 
48 464 
77 689 

130 868 
207 308 
350 014 
548 271 
931 584 

1 433 966 
2 469 368 
3 725 257 
6 510 384 
9 590 838 

17 192 714 
24 357 702 
45 428 434 
61 388 268 

119938 514 
152 169 019 
320 596 894 
366 032 458 
863 591 282 
863 729 021 

2 341 276 788 
1916799026 
6556348906 
3 755 360 368 

18610776960 
6082131438 

53874179752 
1 495 903 344 

164440159702 

0 
2 
8 

24 
62 

148 
330 
710 

1 464 
2 962 
5 814 

11 288 
21 406 
40 364 
74 570 

137 602 
249 088 
451 868 
804 766 

1 440 580 
2 529 686 
4 482 584 
7 775 166 

13 664 146 
23 446 020 
40 953 840 
69 518 842 

120 978 656 
203 223 692 
352 808 860 
586 473 542 

1018405966 
1671890010 
2 913 173 846 
4717224772 
8265261498 

13170191912 
23329646078 
36355510686 
65539706454 
99 432 015 478 

183 391 807 808 
268568296956 
513 870 876 498 
714234719598 

1 440 359 201 368 
1874047502 574 
4048390833688 
4791576314698 

11521319804730 

0 
2 

16 
72 

252 
764 

2 094 
5 362 

12 968 
30 138 
67 446 

147 048 
311 940 
649 860 

1325 234 
2 668 130 
5 278 066 

10 346 200 
19 977 010 
38 329 556 
72 546 986 

136 785 444 
254 596 418 
473 093 498 
868 060 738 

1593517724 
2887257826 
5 246 647 808 
9400175212 

16935336776 
30 035 008 322 
53731142846 
94 373 684 636 

167898005054 
292 175 943 812 
517 568 220 986 
892 446 666 230 

1576771977102 
2692167518718 
4 753 002 697 538 
8 030 862 823 894 

14191946028360 
23 698 437 327 532 
42 048 096 233 634 
69196800976500 

123705722616080 
200105287694726 
361799444980384 
572522672837924 

1054505095310298 

0 
2 
8 

24 
64 

156 
358 
786 

1 664 
3 434 
6 902 

13 656 
26 464 
50 772 
95 754 

179 442 
331 294 
609 496 

1 106 106 
2 004 852 
3 586 874 
6 423 028 

11 351 274 
20 126 538 
35 191 190 
61 883 196 

107 179 834 
187 216 848 
321 395 596 
558 468 104 
950 702 594 

1645491278 
2778049248 
4796424622 
8028750772 

13 848 760 938 
22970545738 
39658497294 
65 097 995 126 

112763087618 
182857632886 
318 657 133 880 
509 161 094 708 
896268945 170 

1 404 966 444 256 
2511592640496 
3842293796974 
7020605858496 

10 398 622 970 264 
19624561178026 
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Table 1. (continued) 

n S(P) F , , ( P )  k , ( P )  F2.r (P ) 

Square site percolation 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

1 
2 
4 
7 

12 
20 
33 
53 
85 

133 
210 
322 
505 
7 59 

1192 
1748 
2 782 
3 931 
6 476 
8 579 

15 216 
17 847 
36 761 
33 612 
93 961 
47 282 

262 987 
-16 105 
827 382 

-571 524 
2 936 705 

-3 661 626 
11 507 775 

48 169 220 
-90 436 605 
209 765 885 

-421 114 926 
934 999 403 

- 1 940 096 836 
4221969137 

-8 903 758 084 
19208110665 

-40 856 793 461 
87 866047787 

-187 795 694 858 
403 517351 347 

-18 880652 

0 
2 
8 

22 
52 

112 
228 
442 
832 

1516 
2 720 
4 754 
8 264 

14 000 
23 824 
39 318 
66 052 

106 282 
177 884 
277 936 
469 384 
703 924 

1 225 052 
1718 226 
3 203 156 
3 974 696 
8 551 248 
8 307 370 

23 950 704 
13 195 606 
72 779 892 
-1 798 186 

246 605 280 
-165 440 790 

935 635 244 
- 1  166 043 794 

3 896 720 688 
-6 470 965 954 
17 297 466 660 

-33 101 156 302 
79718300900 

-163 586 078 926 
374927721428 

-196 243 269 742 
1782844089528 

-3 850 361 954 756 
8526692750236 

-864759759311 -18563737025990 
1858 291 322 498 40 898 675 755 280 

Triangular bond percolation 
0 1 0 
1 3 4 
2 9 24 

0 
2 

16 
68 

220 
608 

1520 
3 526 
7 756 

16 302 
33 172 
65 378 

126 224 
237 600 
441 776 
802 820 

1451 932 
2 563 356 
4 544 304 
7 818 078 

13 684 784 
22 938 278 
39 986 208 
64 996 080 

114 280 984 
177 912 196 
322 438 072 
467 942 962 
909 533 348 

1162410740 
2614286452 
2595422914 
7869393556 
4 348 425 126 

25625330524 
-1 054012626 
92617456680 

-64 842 762 130 
373 042 426 296 

-478 809 964 204 
1641532494032 

-2 793 424 377 040 
7665060608076 

-15002173968860 
37057168356652 

-77725687530014 
182456293328988 

-395779410517728 
906220153528224 

0 
6 

68 

0 

8 
24 
60 

136 
288 
582 

1132 
2 138 
3 940 
7 114 

12 632 
22 080 
38 160 
65 056 

110 172 
184 032 
306 968 
503 650 
831 408 

1 340 338 
2 201 840 
3 479 116 
5 733 312 
8814468 

14 772 040 
21 734 370 
37 997 724 
51 650 456 
98 952 836 

115227474 
266 750 996 
223 323 542 
768 153 044 
261 658 998 

2 443 777 216 
-717 803 658 
8 754 481 712 

-8 229 926 352 
35018197920 

-51 106 610 852 
151 983 829 124 

-213 752 308 264 
694038101604 

-1 385 891 817 602 
3260155117268 

-6 844 942 177 300 
15539271241976 

0 
2 

12 
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Table 1. (continued) 

Triangular bond percolation 
3 25 
4 66 
5 168 
6 417 
7 1014 
8 2 427 
9 5 737 

10 13 412 
11 31 088 
12 71 506 
13 163 378 
14 371 272 
15 839 248 
16 1 889 019 
17 4 235 082 
18 9 459 687 
19 21 067 566 
20 46 769 977 
21 103 574 916 
22 228 808 544 
23 504 286 803 
24 1109 344 029 
25 2435398781 

Triangular site percolation 
0 1 
1 3 
2 7 
3 1s 
4 31 
5 62 
6 122 
7 235 
8 448 
9 842 

10 1572 
11 2 904 
12 5 341 
13 9 743 
14 17 718 
15 32 009 
16 57 701 
17 IO3 445 
18 185 I65 
19 329 904 
20 587 136 
21 1 040 674 
22 I 843 300 
23 3 253 020 
24 5 738 329 
25 10 090 036 
26 17 736 533 

104 
384 

1284 
4 012 

11 924 
34 100 
94 584 

255 852 
677 850 

1 764 482 
4 523 924 

11 447 870 
28 636 218 
70 907 326 

173 991 368 
423 469 988 

1023 162920 
2455645268 
5858183260 

13 898 041 838 
32 804 047 708 
77067740230 

180 271 746 166 

0 
4 

20 
68 

196 
512 

1256 
2 936 
6 628 

14 528 
31 140 
65 414 

135 276 
275 656 
555 216 

1 105 726 
2 182 380 
4 268 906 
8 290 740 

15 984 420 
30638312 
58 369 924 

110 665 328 
208 734 268 
392 103 508 
733 311 754 

1366650536 

442 
2 218 
9 528 

36 834 
131 856 
445 000 

1 433 294 
4444006 

13 349 510 
39 041 224 

11 1 583 236 
312 618 368 
860 662 498 

2333 112020 
6238124024 

16 474 149 036 
43 023 953 304 

111230237224 
284926172 100 
723731637254 

1824 124911 010 
4564862407 I24 

11 348 210 517 840 

0 
6 

60 
314 

1 240 
4 166 

12 600 
35 324 
93 576 

236 944 
578 764 

1371 478 
3 169 380 
7 165 478 

15 901 324 
34 705 018 
74 661 832 

158 529 158 
332 756 408 
691 084 378 

I421 836528 
2899678894 
5867341452 

11 784640984 
23 512 608 484 
46616228682 
91 894 597 756 

54 
206 
712 

2 294 
7 024 

20 656 
58 842 

163 250 
443 062 

1 180 156 
3 092 964 
7993 116 

20 401 250 
51 502 616 

128 748 512 
319 010 540 
784 179 992 

1 913 668 608 
4639155964 

11178566462 
26 784 974 870 
63 851 541 584 

151 484343 212 

0 
2 

12 
46 

144 
402 

1 040 
2 548 
5 992 

13 632 
30 220 
65 486 

139 404 
291 770 
602 908 

1 229 242 
2 482 792 
4 959 014 
9 836 840 

19 323 246 
37 773 464 
73 182 570 

141 345 292 
270 647 584 
517 513 972 
980 893 354 

1859 946 412 
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3. Analysis of series 

We have analysed the series using inhomogeneous differential approximants in the 
manner described by Guttmann (1987). This method is intrinsically superior to the 
standard Dlog Pad6 method for such series, as the latter method cannot accommodate 
additive analytic terms, as discussed above. Such terms slow the convergence of the 
Pad6 method. First-order inhomogeneous approximants can include such additive 
terms, while second-order approximants can additionally include a confluent singular- 
ity. It is commonly found that first-order approximants provide more stable estimates 
of the critical parameters than do second-order approximants, even when confluent 
terms are believed to be present. Such effects are due either to the weakness of the 
confluent term, or to the fact that unrealistically long series are usually required to 
detect the presence of such confluent terms. In any event, for the directed percolation 
problem, the correction to scaling exponent is believed to be very close to 1 (see I)  
and as such would be effectively indistinguishable from an analytic correction. Further 
evidence for the absence of a correction to scaling exponent is given in a recent paper 
by Baxter and Guttmann (1988). For all the above reasons then, we have based our 
analysis on first-order differential approximants only. It is fair to say that, despite 
the claimed superiority of differential approximants, the results we have obtained 
for the square lattice bond problem are no better than those obtained in I. The estimates 
for the triangular lattice series for both the site and bond problem are, however, new, 
as are the results for the square lattice site problem. These results provide additional 
evidence in support of the conjectured exponent values. 

We first analysed the mean-size series for the bond and site problem on the square 
and triangular lattice. The results of our analysis are shown in tables 2 and 3. The 
method of analysis is described in Guttmann (1987). For a given number of series 
coefficients, inhomogeneous first-order differential approximants [ L/ N + A; N], A = 
-1,O, 1 are formed, with L, the degree of the inhomogeneous polynomial, ranging 
from 1 to 8, or 0 to 10. Non-defective approximants are then used to give mean values 
of the exponent and critical point. These are defined to be approximants with no 
singularity, other than the physical singularity, in that region of the complex plane 
defined by 

IIm( z)i < 0.005 O.O< Re(z) < 1 . 1 5 ~ ~  (3.1) 
where z is the expansion variable of the series, and z ,  is the critical point, or in this 
case the percolation probability. 

In table 2 we show some of the exponent and critical point estimates for the 
triangular lattice bond problem mean-size series, with L, the degree of the 
inhomogeneous polynomial ranging from 1 to 4. Similar tables were constructed for 
the other three series (triangular site, square site and square bond) but to save space 
we present only a summary of these data in table 3. Thus in table 3 we list the means, 
quoting an error equal to two standard deviations. The last column shows the number, 
1, of approximants used in forming the estimates, that is, defective approximants are 
not included, while the first column gives the number, n, of series coefficients used in 
forming the approximant. For the triangular lattice site problem, p c  and y are steadily 
increasing. It is very difficult to judge the limit of these sequences, but a value of 
2.7777.. . for y seems entirely attainable. For the triangular lattice bond problem, the 
estimates are not monotonic, but there is a general upward trend, which has taken the 
estimate of y slightly above 2.7777 . . . ,but  with error bars that encompass this value. 
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Table 3. Results of the analysis of the mean-size series by first-order differential 
approximants. See text for explanation of n and 1. 

n P C  Y I 

Triangular lattice site problem 
20 0.599 530 (637) 
21 0.595 575 (67) 
22 0.595 582 (45) 
23 0.595 620 (30) 
24 0.595 627 (32) 
25 0.595 632 (69) 
26 0.595 633 (66) 

Triangular lattice bond problem 
19 0.478 082 (168) 
20 0.478 009 (66) 
21 0.478 010 (38) 
22 0.478 018 (14) 
23 0.478 024 (23) 
24 0.478 026 (7) 
25 0.478 025 (7) 

Square lattice site problem 
40 0.705 503 (70) 
41 0.705 516 (41) 
42 0.705 515 (32) 
43 0.705 500 (59) 
44 0.705 507 (21) 
45 0.705 500 (37) 
46 0.705 504 (49) 
47 0.705 489 (21) 
48 0.705 491 (1 1) 

Square lattice bond problem 
40 0.644 696 (2) 
41 0.644 696 (2) 
42 0.644 695 (1) 
43 0.644 696 (4) 
44 0.644 695 (3) 
45 0.644 696 (2) 
46 0.644 697 (1 ) 
47 0.644 697 (3) 
48 0.644 698 (5) 
49 0.644 698 (3) 

2.2700 (372) 
2.2703 (60) 
2.271 1 (46) 
2.2749 (39) 
2.2754 (39) 
2.2761 (80) 
2.2763 (86) 

2.2833 (152) 
2.2767 (64) 
2.2768 (40) 
2.2777 (16) 
2.2785 (26) 
2.2786 ( IO)  
2.285 (11)  

2.2805 (106) 
2.2831 (71) 
2.2829 (55) 
2.2802 (108) 
2.2813 (41) 
2.2797 (73) 
2.2807 (96) 
2.2778 (43) 
2.2781 (22) 

2.2767 (2) 
2.2766 (3) 
2.2764 (2) 
2.2767 (8) 
2.2767 (9) 
2.2767 (3) 
2.2769 (3) 
2.2769 (6) 
2.2771 (11) 
2.2771 (7) 

10 
9 

10 
8 

12 
12 
13 

10 
15 
11 
10 
13 
15 
11 

5 
3 
2 
5 
7 
3 
7 
7 
7 

3 
11 
8 
9 
9 
5 
9 

17 
12 
11 

Combining the results for the bond problem in the manner discussed in Guttmann 
(1987), which weights entries according to their associated error, gives the composite 
result 

p c  = 0.478 023 f 0.000 005 y = 2.2782 f 0.0007. 

For the square lattice site problem, the results are generally trending downward, and 
a limit around 2.278 appears entirely attainable. The results for the square lattice bond 
problem are seen to be steadily increasing, and a limit around 2.278 is estimated. The 
difficulty in extrapolating these trends is that the nature of the convergence has been 
found not to be uniform (Guttmann 1988). Rather, it is found that trends continue 
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until, at a certain value of n (the number of series coefficients used in forming the 
estimates), the estimates of the critical parameters stabilise. It is as if a certain number 
of terms is needed to successfully represent the function. Below this number, we get 
increasingly good estimates of the critical parameters as the number of terms increases. 

For all four series a value of y = 2.278 f 0.002 is consistent with our results. If we 
now make the assumption that this exponent is represented by a ‘simple’ rational 
fraction, where by ‘simple’ we mean a fraction with a denominator less than 100, we 
are immediately led to 41/18. Tentatively accepting this value, we obtain estimates of 
p c  for all four series by linear regression on the estimates used to give the results in 
table 3 (as described in Guttmann (1987)). In this way we find 

p c  = 0.595 646 * 0.000 003 

p c  = 0.478 018 * 0.000 002 

p c  = 0.705 489 f 0.000 004 

p c  = 0.644 701 * 0.000 001 

triangular site problem 

triangular bond problem 

square site problem 

square bond problem. 

To analyse the first- and second-moment series, which are not as well behaved as the 
mean-size series, we fix the value of p c  to the value quoted above, and estimate the 
exponent from the biased differential approximants. In tables 4 and 5 we show typical 
biased estimates of the exponents for the square lattice bond problem zeroth- and 
second-moment series. Table 4 shows the estimate of the exponent for the mean-size 
series (the zeroth moment), and it is readily apparent that the exponent value 
2.2777.. . is  well supported. Table 5 gives estimates of the second moment, (x2), 
exponent y+2vL,  for which we find the value 4.4716* 0.0003, while the corresponding 
table for y+2vII (not shown) gives 5.7455*0.0005. For the triangular lattice bond 
problem we find the corresponding biased estimates are y + 2v, = 4.412 f 0.002 and 
y + 2 9  = 5.7455 f 0.002 respectively. The error bars reflect the scatter of the estimates, 
but do not include errors associated with the uncertainty in p c .  For the square lattice 
bond problem, the possible error in p c  would only cause a variation of a few parts in 
the last place quoted, while for the less precise triangular lattice exponents, the 
corresponding error is no more than 1 in the last digit quoted. 

These results, combined with our assumed result for y, give vL = 1.0969*0.0003 
and = 1.7339 *0.0003. The closest ‘simple’ fractions are 79/72 = 1.097 222 and 
26/15 = 1.7333 . . . respectively. These sum to v, + vll = 2.8308 * 0.0006. Using our 
numerical estimate of y rather than the conjectured exact value gives v, + vIl = 
2.8306*0.0026 for the sum. The corresponding results for the site problem are less 
well behaved. For the triangular lattice site problem we obtain y + 2vll = 5.745 * 0.005 
and y + 2v, = 4.473 * 0.003 respectively. These estimates are consistent with those 
quoted above, though they are of lower precision. The sum of the correlation function 
exponents is still 2.831. For the square lattice site problem, the precision is lower still. 
We find y + 2 q  = 5.743 f 0.010 and y + 2v, = 4.471 f 0.007. These results are therefore 
consistent with, but of lower precision than, those for the bond problem. This observa- 
tion is also true for the ‘ordinary’, i.e. non-directed, percolation problem. 

Taking the above estimates y = 2.278 * 0.002 and vI + vlI = 2.8306 f 0.0026, scaling 
gives p = 0.277 f 0.002, and a = -0.831 * 0.002. These values are just consistent with 
the fractions p = 5/18 = 0.2777 . . . and v, + vll = 22 = 2.8333 . . . cited in Q 1. If, however, 
we stick to the conjectured value of y = 2.2777 . . . , then we obtain p = 0.2765 i 0.0003 
and a = -0.8308 f 0.0003. We note that 1991720 = 0.276 38 . . . and -2991360 = 
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-0.8305 . . . and that these fractions follow from the conjectured values and the scaling 
relations. 

Despite the apparent precision of the second-moment exponent estimates, it is 
worth remembering that such composite series, by which we mean series that depend 
on more than one exponent, are generally considerably less reliable than those series 
that are characterised by a single exponent. Thus while the errors quoted above do 
reflect the self-consistency of the exponent estimates, it would be a mistake to interpret 
them as absolute bounds. This is seen, for example, in the series for the square 
end-to-end distance in self-avoiding walks. That composite series diverges with 
exponent y + 2v, and gives considerably less accurate exponent estimates than the walk 
generating function series which diverges with exponent y (Guttmann 1987). Alterna- 
tive analyses, such as forming the quotient series F ~ , ~ / S  and M,~ /S  should give series 
which diverge at p c  with exponents 2v, and 2vli respectively. In this way we find 
identical estimates for the exponents to those quoted above, without using the estimate 

Turning now to the first-moment ( t )  series, the exponent for this series is y + v l l ,  
of y. 

and biased estimates were obtained as for the second-moment series. These are 

+ vi1 = 4.008 * 0.002 triangular site 

y + = 4.01 11 f 0.0003 triangular bond 

y + = 4.012 f 0.002 square site 

+ = 4.01 15 f 0.0004 square bond. 

Again we see that the bond problem estimates are more accurate than the site problem 
estimates, and combining these with the conjectured value of y gives vl l= 
1.7336 * 0.0006, a result entirely consistent with that obtained from the second-moment 
series. We have also analysed the first-moment bond problem series without biasing, 
and obtain the following results: 

p c  = 0.478 025 * 0.000 006 y + vil= 4.013 f 0.0009 

p c  = 0.644 697 f 0.000 006 y + = 4.010f 0.001 square bond. 

These values are in complete accord with those quoted above, both from other series 
and from different analyses. 

triangular bond 

4. Discussion 

As mentioned in the introduction, the theory of conformal invariance is not applicable 
to such non-translationally invariant problems as this. Nevertheless, it is perhaps 
interesting to look at the scaling indices for this problem to see if perchance they do 
correspond to a set of values characterised by a particular central charge. From the 
relation 2/yT=2-a and X T + Y T = ~ ,  we obtain xT=1318/1019. It is clear that this 
does not correspond to any simple realisation of the Kac formula, or any reasonable 
value of the central charge. The same is true of the simpler set of exponents which 
we rejected. 

In a recent paper (Baxter and Guttmann 1988) we have studied the percolation 
probability series, which gives a direct estimate of the exponent p. This supports the 
conjectured values quoted in § 1. It is hoped that the conjectured exact exponent set 



3832 J W Essam, A J Guttmann and K De’Bell 

may help in the search for an exact solution. In conclusion we remark that the 
numerically close exponent set v, + vll = 17/6, p = 51 18, a = -5/6 and S = 46/5 is 
aesthetically far more satisfactory, but regrettably is not as well supported numerically 
as those to which we have reluctantly been led: y = 411 18, v, = 79/72, vlI = 261 15, p = 
199/720, a = -299/360 and S = 1839/199. While we are sympathetic with the view 
that these horrible fractions appear far less likely than the numerically close set 
mentioned, the numerical evidence is firmly in favour of the values we have conjectured. 
The only additional comment we can offer is that perhaps such unappealing exponents 
are characteristic of directed problems. 
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